Latest Posts

Scanning Cameras

In the forefront of recent cool technological advances, 3D printing has to be at the top of the list. The average person now had the ability to print just about anything, providing they have a 3D model. With a 3D scan and a 3D printer, you can literally reproduce anything, from a piece of jewelry to a building. Scanning cameras can also be used as a platform for developing totally new creations. For a frame of reference, think about Photoshop and how using a photo, you could modify an image in a variety of different ways. 3D scanning cameras give you the same capabilities, but with objects.

Shooting for 3D Scans

Making a 3D model involves a camera and software. Many different types of cameras can be used from GoPros to videos and smartphone but DSLR cameras work best. First, the object must be still, not too big, small or shiny. There needs to be lots of surface details and not too many areas that are uniform and have no definable features. Thin, delicate parts might also cause some problems. Place the object on an easy to shoot platform with good lighting, such as a stool. Next, get ready to take about 100 photographs remembering that the better the photos, the better the scan.

The photographs of the object need to be from every angle and every side. It is best to overlap the photos to best capture its 3D shape. The object of each picture should be to overlap from the previous photo. The software does not care about excess photos or overlapping, or even order of photos for that matter. It cannot create from material it does not have so it is better to take too many pictures than too few.

The software you are using to create 3D scans from your camera should instruct you on how to set up the camera for the best shots. Taking better quality photos means better quality scans. Remember that taking photos from different angles will alter the background of the photos. Pick a multitude of angles to be sure to get the best exposure of the object. It is best to monitor the photos as you take them to be aware of how the background changes, and make sure the effect is not too dramatic. Also, keep an eye on the exposure of the shots as overexposure is better than underexposure.

Camera Scanning Software

Once the object is photographed from a variety of angles, it’s time to pick your scanning software. There are many choices available including free software such as Autodesk and Memerito. Both are easy to use. Other options that are higher in quality but take up a lot of RAM and are a bit more difficult to use are Autodesk’s 123D Catch and Agisoft Photoscan. After choosing the software, it is time to process your images. This will include mesh and color mapping. “Shapespeare” offers useful tips on how to process and 3D print just about anything.

Additive Technologies in Injection Molds

Injection molds can be produced faster and at lower costs using additive technologies rather than subtractive technology. In addition, additively produced tools can be used to indicate the performance of a final hardened tool. The use of additively-fabricated molds can create plastic components by the dozens, and in some cases, the millions, to be used for prototypes or testing.

Subtractive CNC or spark erosion drawbacks:

  • Methods are slow and expensive.
  • Skilled workers for these methods are in short supply.
  • Product complexity is high, product cycles are short.
  • More precise tools are needed from declining supply of toolmakers.

Benefits of Additive Technology

The benefits of the process of additive technology in injection molds include saving time and labor. In addition, additive technologies can provide the option of improving mold performance that supersedes subtractive technologies. It provides the ability to build conformal cooling channels which assist with increased thermal performance. It also allows for the use of multiple or gradient materials which optimizes the performance of molds. These benefits decrease cost and may be a revolutionary development in the field by decreasing cycle times by 20 to 30 %.

When Should Additive Technology Be Used?

Additive technology may never be able to replace subtractive methods, even though progress has been made to increase labor, time, precision and durability. The benefits should be evaluated on a case by case basis and should be considered for the following types of projects: when reduction production to market time is vital, for short to medium productions and prototypes, and for molds that are difficult to machine due to geometry.

Limitations

While additive methods as compare to CNC do have its advantages, the limitations should also be considered. The tools produced by additive methods can be less accurate and less durable. Some parts may be prone to geometry and size limitations. The parts produced may not be identical to final hardened tooling. Additionally, the tools produced utilizing additive methods may not be modified easy or corrected using the traditional tool making methods.

There are variations of these limitations based on each individual case and for the specific additive technology utilized. Tool fabrication by additive technology is a one-shot deal due to the fact that tools produced by this method cannot be modified. This is a disadvantage compared to conventional tooling that allows for modifications during the tooling process.

There are many complex factors in considering selecting the additive process such as: final application, part size, production volume, material requirements and the need for accuracy. It is important to keep in mind that while direct tool production may be faster, the indirect process can be lower in cost and produce more accuracy. In certain cases, it may be inappropriate to produce one part of a tool with CNC technology and the other part with additive methods. Consideration should be given for economy and an appropriate process for each component of a tool rather than for the tool in its entirety.

3D Scan Helped to Recreate the World of Star Wars

Photo scanning, also known as photogrammetry, is the process of capturing reality through the use of regular or 2D photos. Those photos are then used to create computer generated algorithms that in turn create textured 3D models. The first job of the 3D scanner is to create a point cloud which is geometric samples on the subject’s surface. The points are then used to create the shape of a subject, a process referred to as reconstruction. The colors are collected at each point recreate the subject realistically.

A 3D scanner has common traits with a camera in that they both have a cone-shaped field of view and can only collect information about surfaces that have an unobstructed view. Basic photos collect color information in its field of view. A 3D scanner collects distance information about everything in its field of view. This virtual photo produced by the 3D scanner gives information about the distance to each surface point. This provides a 3-dimensional position for each surface point that needs to be identified.

A single scan will not provide enough information to make a complete model of a subject. It may take hundreds of photos from different angles and directions to obtain the necessary information to replicate a subject. Then, the scans have to be processed through a reference system to merge the scans in order to create a complete model. The process is called the 3D scanning pipeline.

3D Scans Create Star Wars Character

3D modeling techniques have been used in the entertainment industry, especially in gaming, including the worlds in Star War’s video game Battlefront. Lucasfilm recently used 3D scans for their movie Rogue One: A Star Wars Story to recreate Grand Moff Tarkin. The original actor, Peter Cushing, who played the character in Star Wars in 1977, died in 1994. With the use of a facial performance rig worn by the actor Guy Henry, Lucasfilm was able to pull off one of the most stunning visual effects in modern movie history.

Industrial Light and Magic (ILM) was responsible for the 3D recreation of Grand Moff Tarkin. Usually, the virtual process takes place by digitally sculpting or using 3D scans of living actors. This was not possible since Cushing passed away. ILM began studying Tarkin’s character from the original Star Wars movie, A New Hope. This process was not having much success. ILM then stumbled on a life cast of Cushing that was used in the movie Top Secret, produced in 1984. This key element allowed the visual effects team to make great process. First, ILM sculpted Tarkin’s face using CGI and digital models. Then, they were able to use their 3D scanner to make the 3D models. Using markers to pinpoint the location of Tarkin’s face, points of reference were created to map Tarkin’s face over Guy Henry’s face for the filming of the movie. The device they used was the NextEngine 3D Laser Scanner that captured the textures and colors needed to make the special effects realistic and lifelike.

Metal Castings – Investment Castings

Additive technologies involve the use of injection molds which can produce components faster and at lower costs than the traditional use of subtractive technology. Additive technologies can be utilized as investment casting patterns. Casting methods are one of the first industrial processes developed by humans and have been utilized for thousands of years. The results can yield detailed and intricate results. One of the first materials used for the casting process was bees wax. This process is so adaptable that the forms of the bees have been used as patterns for producing detailed and stunning gold jewelry.

One of the modern applications for additive casting patterns is creating environmentally friendly and socially conscious jewelry. On the other end of the spectrum, applications for casting patterns have produced products that contain a variety of metals and can weigh several hundred pounds.

Additive casting patterns involve a thick coating or investing, which is a pattern that melts or burns out quickly as opposed to a material like ceramic, which doesn’t. A gate can be built into the pattern for allowing liquid materials to be poured into the mold. Passageways can be created to allow for hot air and melted and burned pattern materials to escape. Invested patterns can be placed into a furnace to be fired. This allows burn out or the pattern to melt and fuse the ceramic into a solid, hollow mold. At this point, molten metal can be poured into the ceramic mold and after the liquid metal cools and becomes solid, the mold can be broken, revealing the desired object. Excess material needs to be removed and the object will usually require substantial cleaning.

Additively-generated Patterns

Other types of casting can be created from additively-generated patterns. They can be created from thermoplastic extrusion using wax, plastics, 3D printing and inkjet technology that utilize wax-like plastics. These types of materials require being melted or burned very cleanly from the investment. Patterns created from these processes can be any size and range from tiny to several meters. The highest resolution produced for these products is from inkjet technology or 3DP. It can be used for creating large envelopes for industrial sized castings.

Another type of production for patterns for investment casting is stereolithography. The drawback of stereolithography is that the photopolymer materials used in this process are more difficult to burn out than materials in the other types of processes. They also have a habit of expanding and cracking the mold. In order to counteract these issues, 3D Systems has created a special build style called QuickCast. The improvements to the system included creating a photopolymer pattern built into thin, hollow sections which crumple during the burnout process. The lack of expansion results in less material to remove after the completion of the process.

Sand Castings

Sand casting is a process that begins by compacting fine and moist sand around a box-like framework constructed out of wood. At the end of the process, the pattern is removed from the sand which leaves behind a cavity that can be filled with molten metal. The metal cools and then hardens and is removed from the sand. The sand is then able to be recycled. This process also required the extra material to be removed from the finished product and clean-up performed.

Sand casting holds the option to skip the step of building a pattern mold. This can be advantageous if very few castings are required or if the patterns being produced are very expensive. It’s most beneficial during the early stages of a project before the final dimensions, as well as other parameters, have already been determined.

A system that does have size limitations for the molds it can produce is laser sintering. This system fuses polymer coated sand one layer at a time to form sand casting molds. This method has been coined DirectCroning by EOS GmbH.

A process that removes the use of additive fabrication altogether is offered by Clinkenbeard & Associates. In this process, large blocks of sand are created using a polymer binder. The blocks are then machined utilizing CNC techniques and diamond tools to create a mold for metal.

Large parts can be accommodated by ExOne and the German company Voxeljet Technologies. Their process involves machines that utilize a wide area inkjet which bonds layers of sand into core patterns and sand castings in a build chamber, weighing several tons. This allows large volumes of several cubic meters to be produced, similar to 3D printing developed by MIT.

Sand castings can also be produced by Laminated Object Manufacturing (LOM). The main US producer of this technology shut down a decade ago limiting the growth of this application. LOM is available from some service companies and can produce large parts similar to wood patterns.

Scanning Technologies at a Glance

There is a plethora of companies that currently manufacture 3D scanners and digitizers. This growing market produces instruments able to digitize objects microscopic in size to entire constructions sites. The speeds for data acquisition vary from a few points per minute to a million points per second. The price ranges vary from a thousand dollars to a hundred thousand. This broad spectrum represents the large variety of devices now available. The market and technology base for these products may be premature and not fully developed.

Another field that also has a wide range of technology is rapid prototyping. Coincidentally, the Reverse Engineering (RE) used in this field may also be reverse-rapid prototyping. RE develops converted point cloud data, acquired through digitization or noncontact scanning in CAD models. The CAD models can be then used for fabrication materials by removing methods like milling or material incremental methods.

Key Components

There are three key specifications when considering digitizers: volume, speed, and accuracy. Volume is usually not much of a limitation because scans can be stitched together to create objects that are larger than the available scanning volume. Time and accuracy are elements that need to be considered.

Accuracy is the precise measurement that correlates directly to dimension. It isn’t the same as resolution, which specifies distance or volume to the smallest measurable increment. An instrument can have a high resolution and still be inaccurate, or the opposite can occur. Problems occur when manufacturers specify one value but not the other. They do this by creating their own set of conditions and terminology. This can cause different specifications to be applied to each axis of measurement. Accuracy and resolution are vital to applications and may require additional data from manufacturers or performance testing.

Speed is the frequency determined in points/second. This area also has a tremendous amount of variation among manufacturers as they only provide anecdotal specs or no information. The best possible option is to determine which regimen the instrument falls under.

Mechanical Touch-Probe Systems

There is a large distinction in digitizing technology between contacting and non-contacting instruments. Touch-probes, known as contacting digitizers, provide consistent measuring accuracy. They are very affordable instruments. Some contact digitizers are manually positioned to provide a single measurement. Others may scan a surface to provide a series of measurements. Touch-probes can be programmed to automatically scan an object using a mechanical drive system. Many of these systems have articulated arms that provide free movement in many directions.

A disadvantage of a contacting device is that it can distort soft objects. They may also be too slow to digitize complex objects such as the human body or may require assistance in scanning complex and curved surfaces. The advantage is that they are impervious to surface colors, transparent or reflective surfaces that may affect lasers and light-based systems. Even though they are slow, they may be the most effective means of digitizing surfaces where only a few data points need to be gathered. Narrow slots, pockets and difficult to digitize surfaces may be accessed more easily by manually positioned devices.

Laser-Based Systems

The two classes of non-contact scanners are based on either laser technology or a non-coherent white or broadband light source. The laser scanners use geometric triangulation to obtain an object’s surface coordinates. Their simple technique and quick ability to digitize large volumes with sufficient accuracy and resolution make them popular. The system is complete with self-contained measuring heads which usually mount to touch-probe arms. They also have customizable fixtures for special applications.

If surfaces have color, are transparent or reflective, laser and light-based systems may be affected. With experience, laborers have learned to work around surface issues which have caused errors. It is imperative that safety factors be followed when using a laser. Although lasers are calibrated not to cause harm, using them on reflective curved surfaces could potentially cause harm from a focused beam.

Dual-Capability Systems

Digitizing instruments and laser scanners often have complimentary capabilities. Laser devices are capable of scanning broad areas using lasers mounted on the arm. Areas that might cause problems for lasers can be contact-probed. Companies are now developing instruments that can simultaneously carry a contact probe and a laser head.

Some companies, such as Arius 3D, have the ability to produce color laser scanning. Arius’s scanning technology utilizes a combination of red, green and blue lasers to gather geometric data and color. Minolta and Cyberware use lasers to get measurements and then combine that data with color video.

Other Laser Systems

Other laser technologies include optical radar, laser tracking and time of flight. These systems have good accuracy and the ability to take measurements of the object from a great distance. The “stand-off” distance, which can be tens of meters, has important applications in digitizing buildings, large machines, and large structures.

The time it takes for light given off by a laser to return to its sensor is known as “time of flight”. Optical radar systems operate the same way as do radar systems, measuring the return time of radio waves. Both can capture scenes and objects with great speed and don’t usually require retroreflectors. Laser trackers search for a signal from retroreflectors on the object in its field of view. This system works with a high level of precision and is often used for aligning large machinery or verifying dimensions of a large object.

3D Printing Stores and Labs in Berlin

The idea of accessibility is being used in Berlin because it is believed that everyone should have the ability to become a maker and have access to 3D files, 3D printers, and 3D modeling software. Platforms, such as Thingivers; software, such as Meshmixer; and 3D printers are now available for affordable prices. As a matter of fact, there have been a growth spurt in this accessibility over the previous years. Places like universities have this technology available within their facilities, so that students can develop and research in their fields. Recently, the Technical University of Berlin (TU), for instance, has taken it a step further by making the accessibility of additive manufacturing by opening a student run “3D Printing Repair Café”.

berlin-stores-and-labs-to-print

This past April, the 3D Printing Repair Café celebrated its opening by providing students and even non-students with a space to try out the 3D printing technology. They can do this whether need a creative design model, a spare bicycle part, or just a custom made gift. Also, the space consists of Ultimaker brand 3D printers which were launched by the Society of Friends of TU Berlin.

This space also offers assistance in fostering the university’s maker community by providing numerous workshops and events in hopes for interdisciplinary exchanges of ideas. These workshops tackle areas, like building DIY 3D printers, and familiarizing with hand tools and machines.

For those interested, the 3D Printing Repair Café is located at the TU’s Charlottenburg Campus. For those not in Germany, the student run initiative is still worth reading because it provides a model in a creative and innovative space that is applicable for nearly any university.

In other reports, Formlabs, the Form 1+ desktop 3D printer creators, have recently announced further expansion of the EU market. In responding to the growing demands within the EU market, Formlabs opened its first office outside the United States. As a matter of fact, it’s located in the heart of Berlin in which offers greater support and service to Formlabs community within the EU.

Additionally, Formlabs recently announced an official distribution partnership with iGo3D. This is a desktop 3D printer’s distributor based in Germany. This partnership is focusing on enhancing support and sales for Formlabs’ customers in Germany and the ability in experiencing the printers in primarily being at iGo3D’s retail locations in Frankfurt, Oldenburg, Stuttgart, and Hamburg. The one in Hannover would be later. Also, the pricing for these items are affordable.

Lastly, companies like Trigonart, Objectplot, Botspot and blueprint 3D offer 3D printing stuff and services. Botspot is the first 3D printing store of Berlin recently opened. It’s located at the Moritz Platz in the Berlin-Kreuzberg area. This company claimed to possess the most comprehensive provision of 3D printing in Germany. Botspot offers full service in 3D which includes self-made 3D designs and architectural models, creating miniatures of customers, selling 3D accessories and printers, and 3D printing of everyday items. Consumers are able to buy 3D printers, such as the MakerBot, Solidoodle, Ultimaker, and Delta Tower.

Holocreators.com is located in the center of Berlin  and offers also very different 3D printing services, 3d-Figuren Druck individual techniques, materials, surfaces, and colors, for special orders are possible within a few days. 3D data can also be send online, so that there is no need to travel all day through the city. If you need an individual support; it’s obviously better to take the path. The company also helps you with paintings or unready files, questions of design and adequate technology.



TrigonArt Bauer Praus GbR
Gundelfinger Str. 43A
10318 Berlin
+49 30 34660330


ObjectPlot.de
Gundelfinger Str. 43A
10318 Berlin
Tel.: 030 – 34 660 331

What is Rapid Tooling

Much progress has been made with direct part fabrication. However, there are still really limited and slow processes with the fastest additive systems. They are incapable of producing parts in a wide enough range of material fast enough to match. They simply aren’t able to produce parts in a material range wide enough at a quick enough rate to match the enormous requirements’ spectrum across all industries. Thus, conventional processes, such as casting and molding, are still the only methods capable of producing parts in a material range wide enough at a quick enough rate to match the enormous requirements’ spectrum.

This is where rapid tooling comes in. Rapid tooling is tooling that is made with additive processes in which the term is derived from the most popular early name within the field called rapid prototyping. Furthermore, rapid prototyping eventually started extending some of the technologies to create objects out of metals and more durable items. This means that rapid prototyping can be used to create tools, like injection molds. Additionally, the natural terminology extension is known as rapid tooling, especially since time saving is very important.

Many additive technologies, such as laser powder forming and laser sintering, may be utilized to create tools directly in metals and other material. And thus, using the term, “rapid tooling” to these procedures in such applications appeared to be quite right.

On the other hand, indirect processes sometimes have been called rapid tooling, and that is not correct. These indirect processes occur when methods of additive fabrication are used to create a pattern or model where a tool is also created using a secondary process. Many of these methodologies existed a long time before additive fabrication was invented. Also, mainly all of these methods are able to use patterns from any fashion. Having said this, it’s determined that a process including material transfer by itself is not part of rapid tooling, but using one of these processes with a rapid prototyping pattern would be considered a part of rapid tooling. Methods often referred to as rapid tooling techniques include the following: selective laser melting (SLM), Laser Engineered Net Shaping, Direct Metal Deposition, and others. With rapid tooling, the necessary customization is granted for personal applications, instead of dealing with time-wasted, tedious trial and error measurements. Industries everywhere are able to apply these processes for more acute customization and better accuracy in record time.

Making Plastic Parts by Indirect Processes

When it comes to making plastic parts by using indirect processes, it can be done in various ways. Individual plastic parts or production runs of low quantity that is intended for functional usage may need different material properties other than the material utilized in available additive processes. This is also true even if the material is plastic. As a matter of fact, the additive part may belong to another type of material, such as paper or plaster.

making-plastic-parts-by-indirect-processe

The following include several methods used to produce plastic parts through indirect processes:

Silicone Rubber Toolingis a standard technique in making small amounts of polymer parts. Nearly any physical item is able to be used as a pattern in making silicone rubber tooling, in which turn, these tools can be utilized to mold small and medium quantities of parts within a huge variety of epoxy, urethane, or other polymers. Some polymers have properties that emulate specific engineering thermoplastics. Also, it’s possible to fill them for more strength. This method won’t produce a part that’s identical to a part that’s injection molded because the manufacture’s conditions aren’t the same.

Silicone rubber tooling is usually used in manual casting techniques. However, more automated technologies have shown up in recent years. The reaction injection molding (RIM) systems can make several parts each hour from rubber molds. Additionally, molds last longer due to the lower exposure time of chemical procedures. A great amount of the other procedural variants is also available from some vendors, like rubber plastic molding.

RTV Molding Process – this is when the temperature vulcanizing of silicone rubber is occurring. This process is poured around the pattern of a frame of the silicon rubbing process. During this process, a vacuum may be required for the assembly in order to pull out air bubbles out of the rubber. This will help insure the fidelity of the pattern. And then, the pattern is removed when the rubber is solidified and ready for use.

Aluminum Filled Epoxy Tooling – is a great choice for short prototype and productions requiring an engineering thermoplastic as the final material. Thought to be one step above from the silicone rubber tooling, the fabrication is similar to it in a practice that’s more expensive and complicated.

Molds made with this technique are utilized in injection molding machinery, but the fabricated parts are not identical to the parts made in high volume mold. Considerably longer cycle time is required because of the material’s poorer thermal conductivity in comparison to metal. Additionally, lower pressures must be utilized to accommodate its lower strength. This process is best for simple shapes. Also, depending on the requirements, the tool life is adequate for a range of 50 to 1000 parts. Lastly, a simple description of the process is provided on the sidebar.

Spray Metal Tooling – made in a similar fashion to aluminum-filled epoxy tooling, an epoxy or metal alloy tool of low melting temperatures is prepared with casting this material against a pattern. Then, a thin coat of metal is arc sprayed on the working surface of the resultant mold to give it more strength. The tool life for this process is approximately the same as for aluminum-filled epoxy. However, this process can accommodate bigger parts.

Kirksite Tooling – is spectacular for more complicated geometries, but it’s normally more expensive and less accurate than spray metal tooling or aluminum-filled epoxy. Kirksite is an alloy that is zinc-based, and the tool, producing process begins with an additive pattern. There are more transfer steps than other methods mentioned above, and the tool life is the same as aluminum-filled epoxy tools or spray metal.

Rapid Solidification Process(RSP)developed by the Idaho National Engineering and Environmental Laboratory (INEEL) working with many large corporations, RSP Tooling LLC was established to commercialize the procedure, but it’s no longer in business. INEEL is the only source of information remaining with this technique that is maintained in its Spray Forming Group.

With this process, high velocity spraying is done on molten metal to create a polymer or ceramic pattern that can be generated by additive methods and other ways. Alloys, Kirksite, invar, gray iron, brass, copper, tool steels, and stainless steel, for instance, can be used. Also, rapid cooling and hardening are done as the form is impacted by the metal droplets.
This procedure is extremely fast, high in resolution, and gentle. Also, superior, intrinsic, metal properties are yielded.

RePliForm – a process based on electroforming, it’s used mainly as a strengthening and finishing method for plastic parts produced by additive fabrication. It’s also a tooling process still which is its original application. With is process, a metal shell is plated on an additive master. Then, the pattern is removed after the electroforming of the metal shell, and the hollow space is normally filled up with a material of a ceramic composite.

Direct Additive Fabrication of Metal Parts and Injection Molds

There are many ways to apply direct additive fabrication of metal parts and injection molds which are as follows:

metal-parts-printed-additive3d

Laser Sinteringused frequently to create today’s tools and metal parts. A supplier that exclusively focuses on this process makes systems that are mainly dedicated to metal or plastic materials. It provides a range of metal material that include titanium, nickel alloys, cobalt chrome, aluminum, and stainless and hardened steels.

Selective Laser Melting(SLM) – is similar to laser sintering; however, ceramic powders or fully melts metal directly form fully dense parts. No steps of post processing, such as infiltration or burnout, are needed as with the production of porous parts by laser sintering even though it’s still necessary for some finish machining.

Electron Beam Melting(EBM)originally developed at the Chalmers University, this process is powder based in which has much in common with laser sintering. However, the laser is replaced with a scanned 4KW electron beam that makes fully dense parts. Available material includes pure titanium, titanium alloy (Ti-6A1-4V), Arcam Low Alloy Steel, and H13 tool steel. Parts are fabricated within a vacuum at around 1000 degree Celsius to enhance material properties and limit internal stresses. The cooling process is also maintained to make well defined hardening. The parts also need some final matching after the fabrication.

Electron Beam Free Form Fabrication(EBFFF)) – a wire feedstock is melted by an electron beam, and material is deposited in layers up to 40 lbs each hour. EBFFF is able to utilize a wide array of material, such as refractory alloys, stainless steel, nickel, and titanium. Also, it’s energy efficient in comparison to laser based systems.

M-Print – the bonding of metal powder layers is done with selectively applied photopolymer with the usage of an inkjet head with a wide area. An UV lamp mounted on the head assembly cures in the photopolymer in layers. The formation of the green part is then sintered to create a porous steel matrix that’s infiltrated with bronze. Molds created by the method may be used to create 100s of thousands of parts of mostly any plastic.

Laser Engineered Net Shaping(LENS))developed by Sandia National Labs in which is commercialized by Optomec Inc., this is really similar to POM’s technology. This additive fabricating method isn’t self-supporting, and thus, it’s difficult in some applications to remove fully dense steel support structures. Molds and parts that are fully dense and tool steel are offered through this method from a lot of material. LENS is also stated to make better metallurgical properties than the ones available from intrinsic material. And furthermore, the parts or molds must endure considerable secondary finishing operations prior to them being used.

Direct Metal Deposition – is similar to LENS, but the main differences are in the machine control and implementation details. This method provides similar benefits in terms of several materials, capability of conformal cooling for molds, and possesses the same limitations. Additionally, this is a fairly slow process that deposits only .5 to 1 cu in per hour which makes it more appropriate for building details of the part’s pre-form rather than building it from scratch.

Ultrasonic Consolidation – offered by Fabrisonic LLC, a subsidiary of Solidica, this method is based on CNC cutting and bonding of thin, metal strip material in a tool or part utilizing a lamination technique. Strips are ultrasonically bonded together. Also, one of the spectacular provisions of this method in comparison to laser powder forming methods is avoiding expensive powder materials and high powered lasers which can be potentially hazardous and expensive. Another benefit is the reduction or elimination of EDM.

Space Puzzle Moldinga hybrid approach of Protofrom GmbH in Germany, molds are produced as complex small pieces’ series that fit together in a special framed like a jigsaw puzzle that’s three dimensional. CNC is usually utilized to create the puzzle elements. But, aluminum-filled epoxy casting and other methods have also been utilized as additive fabrication methods, such as laser sintering. Additionally, molds are removed and disassembled manually after each shot for part ejection that results in a higher piece/part cost than fully automated methods. Hundreds of parts can be produced by using the molds.

Laminated Tooling and Part Fabrication – is laminated object manufacturing (LOM) method adaptation to the problem. Usually, profiles are cut utilizing different means from metal sheets or strips that are either bonded in layers or held tightly in a frame for forming usable parts.

STAT (Sample Time Acceleration Technology) – from Catalyst PDG Inc., it is based on CNC machining of composite materials to create injection molding inserts. This method’s goal is reducing the time to get parts in final material. According to the company, a tool may be finished in six to 15 days.

Rapid Injection Molding – a fairly conventional technique used by many companies to offer injection molded parts on an expedited basis. These companies usually create modifications to the standard injection molding method and work flow that result in some minor restrictions. Nevertheless, a wide parts’ range may be manufactured in almost any plastic and at high volumes.

Protomolda certain subjective fabrication that’s really cost effective. This company can deliver parts as fast as three days for tooling costs as low as $1,795 that include 25 sample parts. They also claim to have the capability to ship parts as fast as the day after a customer’s CAD file receipt and deliver up to 500 parts in only eight hours.

Advanced Technology – provides injection molding parts and tools within 10 days to its biggest customer base of the medical industry for several years. It’s called TCT Technology, and they claim that approximately 50 percent of jobs are completed within five days. The tools made can use any production thermoplastic with mold parameters and tolerances and guaranteed for 2 million parts. The mold parameters and tolerances are identical to standard injection molding procedures.

Stereolithography-based Toolingepoxy based stereolithography material have been utilized to fabricate injection molds for several years. It may also require backing the mold with epoxy to offer strength, and perform secondary finishing operations for removing stair stepping and improve the finish.

Functional Parts and Tools by Additive Fabrication – Direct Fabrication and Indirect or Secondary Processes

Additive fabrication is a class of manufacturing procedures where a part is built by adding material layers upon one another. This process has been evolutionary in different manufacturing applications. And as a result, it is now an accepted solution in fabricating customized, geometrically complex, or low volume parts, and it’s recognizable in producing tools and parts that are not possible to combine and form into various materials. Though many applications are hidden from the public and are still in development, their ranges are potentially vast. Even some of the technology’s liabilities are transformed into advantages. Also, additive technology is utilized by directly fabricating items, such as molds and parts, or it is utilized through secondary or indirect purposes.

Direct Fabrication

Plastic and metal parts are often directly fabricated. With plastic parts, stereolithography, thermoplastic extrusion methods, and laser sintering (LS) are currently the most important forms used in direct fabrication. Stereolithography is a process in creating objects that are three dimensional with using a laser beam controlled by a computer that builds the required structure from layer to layer. This, in turn, is done with a liquid polymer that hardens with a laser light. With extrusion of thermoplastics, this is a continual process that can be adapted to produce various semi-finished and finished products, such as covered wire, film, pipe, and profile. And laser sintering(LS) creates tough components that are geometrically intricate and uses a highly powered CO2 laser to sinter or fuse powdered thermoplastics. Laser sintering 3D printing remains enclosed in powder when a part is made. This allows complex geometries and prevents the need for supportive structures. And as a result, these parts can be heat resistant, airtight, water resistant, strong, and made of exceptional materials, such as glass and aluminum filled Nylon 12.

The material in the stereolithography and processes include polymerization, monomers, and polymers. Polymers are large molecules formed by a repetition of a limited number of smaller molecules called monomers. The joining of monomers to create larger molecules is called polymerization. Many polymers naturally occur. And as a result, protein is produced by amino acid joining together, the joining of isoprene produces natural rubber, and cellulose is produced when glucose is joined together.

The development of photopolymers for stereolithography and other relatable usages led to materials that show an extensive array of properties. These engineering plastics’ mechanical properties are mimicked by available material. Optical capabilities, snap fit flexibility, and moisture resistance are illustrated. Also, further developments are being pursued or already introduced to improve situations with thermal conductivity, rubber like flexibility, shrinkage, etc.

When it comes to metal parts, they are mostly and directly fabricated with laser powder forming, selective laser melting (SLM), or laser sintering (LS). Once again, these are the most important techniques. Selective laser melting develops from fully dense parts that are in a wide metal selection. With laser sintering, it is used to fabricate parts in several metals, such as cobalt chrome, stainless steel, and steel. Infiltration of secondary metal eliminates porosity. Additionally, parts normally require final machining, and their properties would be somewhat different than parts formed totally of intrinsic material.

The formation of laser powder is able to produce huge parts in titanium, steel, and other metals at gradient, multiple, and full density material. However, the parts may somewhat need more machining than laser sintering does prior to being usable. And furthermore, metal parts’ direct fabrication is discovering its best implementation in applications of high added value, like medicine and aerospace.

Indirect or Secondary Processes

Before indirect of secondary processes can be applied, additive patterns must go through finishing operations. No technology of additive fabrication delivers adequate surface finishes for accurate applications. The stair stepping inherent removal in the different, surface artifacts’ procedures is required prior to the ejection of parts from a mold. Also, this removal can lead to more errors that are introduced.

Most of the time, the accuracy of secondary processes is limited by the pattern’s precision after finishing. Additively fabricated patterns rank best for applications that have a few critical elements. If a lot of tight tolerances are required to be held, it’s normally still cheaper and faster to use CNC.

The material properties utilized in additive processes are continually improving and expanding, but they are still comparatively small in number. Also, a limitless applications’ variety means it would always be necessary to transfer parts fabricated in a material utilized in a process of additive fabrication into another material.