All posts filed under: 3D

Rapid Prototyping in the Fine Arts, Architecture, Jewelry and Industrial Design

The art that has lived through the centuries, that of Da Vinci, Michelangelo, Picasso, among others, is still loved because of the time it took to make, and the precision of the artists’ hand in creating it. The Sistine Chapel, for example, took four years to paint. The statue of David took three years to sculpt. Now, we can print beautiful and perfect items with the use of rapid prototyping and 3D printing, within hours or days. There’s a company in China that is creating art for a purpose. They are 3D printing houses in twenty four hours. In this article, we will discuss the ways in which rapid prototyping and 3D printing are making it easier for people to delve into the fine arts, architecture, jewelry, and industrial design. Fine Arts Wouldn’t it be amazing if one could eat a course in fine arts and be able to create paintings the same way Van-Gogh or Picasso did? Well, that reality is getting closer and closer. In an article provided by Bloomberg, a 3D printer …

What is the difference between an RP machine and a 3D printer?

In the past decade, we’ve come across some amazing discoveries and inventions in technology, which have allowed our society to create, test, and understand new methods of production. Arguably the biggest break-through has been that of the 3D printer, which had the whole world speaking about it after it was showcased at the annual CES convention. Rapid prototyping has been around for much longer. Used as a way to quickly test a new product or process, it has allowed entrepreneurs to get their ideas out and pivot with speed. 3D printing, however, is a revolution of its own. In this article, we will discuss the differences between rapid prototyping machines (RP Machines) and 3D printing. Rapid Prototyping So what is RP, or “rapid prototyping”? Just like the name implies, it is a method of rapidly creating a prototype of an idea that may work in theory, but may not work as perfect, in reality. In order to know whether or not the idea or product will work, one must create the prototype (preliminary model). Most …

3D Printing Stores and Labs in Berlin

The idea of accessibility is being used in Berlin because it is believed that everyone should have the ability to become a maker and have access to 3D files, 3D printers, and 3D modeling software. Platforms, such as Thingivers; software, such as Meshmixer; and 3D printers are now available for affordable prices. As a matter of fact, there have been a growth spurt in this accessibility over the previous years. Places like universities have this technology available within their facilities, so that students can develop and research in their fields. Recently, the Technical University of Berlin (TU), for instance, has taken it a step further by making the accessibility of additive manufacturing by opening a student run “3D Printing Repair Café”. This past April, the 3D Printing Repair Café celebrated its opening by providing students and even non-students with a space to try out the 3D printing technology. They can do this whether need a creative design model, a spare bicycle part, or just a custom made gift. Also, the space consists of Ultimaker brand …

Functional Parts and Tools by Additive Fabrication – Direct Fabrication and Indirect or Secondary Processes

Additive fabrication is a class of manufacturing procedures where a part is built by adding material layers upon one another. This process has been evolutionary in different manufacturing applications. And as a result, it is now an accepted solution in fabricating customized, geometrically complex, or low volume parts, and it’s recognizable in producing tools and parts that are not possible to combine and form into various materials. Though many applications are hidden from the public and are still in development, their ranges are potentially vast. Even some of the technology’s liabilities are transformed into advantages. Also, additive technology is utilized by directly fabricating items, such as molds and parts, or it is utilized through secondary or indirect purposes. Direct Fabrication Plastic and metal parts are often directly fabricated. With plastic parts, stereolithography, thermoplastic extrusion methods, and laser sintering (LS) are currently the most important forms used in direct fabrication. Stereolithography is a process in creating objects that are three dimensional with using a laser beam controlled by a computer that builds the required structure from …

Additional Organizations

There are additional companies that produced 3D printing systems. Formlabs, PP3DP Company (China), Ultimaking Ltd. (Netherlands), and Solidoodle just to name a few. Formlabs, based in Massachusetts, was founded in 2011 was well known for raising close to $3 million in a Kickstarter campaign, and for also creating the Form 1 and Form 2 3D printers. Formlabs and PP3DP Company Formlabs was founded by Maxin Lobovsky, Natan Linder, and David Cranor. The three students met while students at MIT, in the Media Lab. They used their experiences at MIT, as well as Lobovsky using his experience with the Fab@Home project at Cornell University to create FormLabs. FormLabs was developed to create an easy-to-use and affordable desktop stereolithography 3D printer, while receiving early investing from Mitch Kapor, Joi Ito, and Eric Schmidt’s Innovation Endeavor. FormLabs had been featured in a documentary, titled Print the Legend, which documented the stories of several leading companies in the 3D desktop industry. FormLabs was a leader in the 3D printing world. PP3DP Company (China), also known as Personal Portable 3D …

3D Systems

3D systems, a comprehensive set of products and services, that included 3D printers, print materials, on-demand parts services, and digital tools. The 3D ecosystem helped support advanced applications from the product design shop to the operating room. 3D systems had the ability to simulate, do virtual surgical planning, and print medical and dental devices, as well as, provided patient-specific surgical instruments. The 3D system was the original 3D printer and shaper of future 3D solutions, allowing companies and professionals to optimize their designs, bring to life their workflows, be innovative in their products and deliver new business models. The Early Beginnings 3D systems was founded in Valencia, California, by Chuck Hull, the patent-holder and inventor of the first stereolithography (SLA) rapid prototyping system. Before the SLA rapid prototyping was introduced, prior models were expensive and took time to create. With the introduction of solid-state lasers in 1996, Hull and his 3D team were allowed to reformulate their materials. Hull was replaced by Avi Reichental in 2013, while Hull remained an active member of3D systems’ board …

Rep Rap Organization Project

The RepRap Printer, also called the Replicating Rapid Prototyper, was created as a starting point for the British to develop a 3D printer. This 3D printer would be able to make a copy of its own items, at a low cost. With the RepRap able to make copies of its own items, the makers envisioned the possibility of the RepRap units being cheap, allowing the manufacture of more complex products without having to use complex industrial infrastructure to make them. An initial study done on the RepRap supported the claim that by using RepRap to print common products, there were major economic savings. These saving were also more cost efficient since the RepRap printers was able to clone themselves. Making the savings even greater. RepRap, started by Dr. Adrian Bowyer in 2005, a mechanical engineering lecturer at the University of Bath, UK, was first prototyped in September 2006. Adrian Bowyer, a British engineer and mathematician, after spending twenty-two years as a lecturer, then retired from academic life. The first model of the RepRap successfully printed …

Fab@Home Organization

Fab@Home, the first multi-material 3D printer made available to the public, was also one of the first two open-source do-it-yourself 3D printers. The other printer was the RepRap. The goal of the Fab@Home project was to change the high cost and closed nature of the 3D printing industry by creating a low-cost, versatile, open printer. Since the Fab@Home release in 2006, there had been hundreds of Fab@Home 3D printers built across the world. The design elements of Fab@Home could be found in many do-it-yourself printers, more often in the MakerBot Replicator. The Fab@Home project was closed in 2012 once the project’s goal was achieved and distribution of do-it-yourself printers were outpaced by the sales of industrial printers for the first time. Creating a Fabrication System with Low Costs Fab@Home was started in 2006 by Professor Hod Lipson and Evan Malone of the Cornell Computational Synthesis Lab. While attempting to design a robot that could reprogram itself and produce its own hardware, Lipson discovered the need for a rapid-prototyping fabrication machine. The technology for the rapid-prototyping, …

MakerBot Industries

MakerBot Industries, founded in 2009, in New York by Bre Pettis, Adam Mayer, and Zach Smith, was created to engineer and produce 3D printers, using the RepRap 3D printer as their model. Zach Smith was one of the founding members of RepRap Research Foundation, a non-profit program that helped in early research for open-source 3D printers. Bre Pettis, during an art residency in Vienna with Johannes Grenzfurthner/nomochrom in 2007, wanted to create a robot that would print shot glasses for the Roboexotica event and found, while researching, information on the RepRap 3D printer. The MakerBot’s consistent theme throughout their history was shot glasses. Founding, Stocks and Closure – The Company’s History MakerBot started shipping kits in 2009, selling roughly 3,500 units. With demand for the kits being so great, MakerBot owners decided to provide parts for future 3D printers from their own company. Funding for the future printers, was in part provided by Adrian Bowyer, the founder of RepRap, who put up $25,000. The Foundry Group, in 2011, invested $10 million into MakerBot and joined …

Possibilities of 3D Printing

News today portray additive technology as being far from having a complete evolution. On the contrary, most are actually quite mature. The thermoplastic extrusions at the moment have well over eleven thousand patents and applications for the patents in the United States; probably more in other countries largely involved in this sector. Books and academic papers on the same are also been published.